
19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 1/24

React interview
questions

ALEX BOOKER
19 NOV 2020 17 MIN READ•

If you want to land a great React job in 2020 or 2021, this is the post

for you 😌.

We're bringing you this post on the back of our new React Interview

Questions course with the awesome @Cassidoo 🎉

In that course, Cassidoo draws on her professional experience

working at Netlify (and before that, CodePen) to share 28 likely React

interview questions and example answers.

You're reading an epic 4500 word version of those same common

React interview questions and example answers. Use this as a quick

reference or as an exercise to rehearse your answers aloud. We have

also included a PDF below in case you'd like something to download

and print 😎.

Here, we're listing all the same questions plus vetted answers for you

to adapt. Use this as inspiration to phrase eloquent and con�dent

answers that will WOW 🤩 your soon-to-be employer.

For each question, we aim to highlight:

🔑 The key thing to mention in your answer

React interview questions

https://blog.scrimba.com/author/scrimba/
https://blog.scrimba.com/author/scrimba/
https://scrimba.com/learn/reactinterview
https://twitter.com/cassidoo
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 2/24

📝 Where to learn more if you happen to identify a gap in your

knowledge

⛔ In some cases, we'll also mention common wrong answers

for you to avoid at all costs

Without further ado, here are the questions (listed in the same order

that they appear in the course, in case you'd like to use these

resources together):

SUBJECT QUESTION

React DOM What is the difference between the virtual DOM and the

Is the virtual DOM the same as the shadow DOM?

React limitations What are the limitations of React?

JSX What is JSX?

What is the difference between an element and compon

Can you write React without JSX?

Props How do you pass a value from a parent to child?

How do you pass a value from child to parent?

What is prop drilling?

Can a child component modify its own props?

State and lifecycle What is the difference between props and state?

How does state in a class component differ from state in

What is the component lifecycle?

How do you update lifecycle in functional components?

Effects What argument does useEffect take?

When does the useEffect function run?

What is the useEffect function's return value?

Refs What is the difference between ref and state variables?

React interview questions

https://scrimba.com/learn/reactinterview
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 3/24

Click here to download the PDF ⬇

React DOM

What is the difference between the virtual DOM and
the real DOM?

The DOM represents an HTML document as a tree structure wherein

each node represents part of the document (for example, an element,

element attribute, or text):

SUBJECT QUESTION

When is the best time to use refs?

What is the proper way to update a ref in a function com

Context What is the difference between the Context API and prop

When shouldn't you use the Context API?

Other What is a Fragment?

When should you create class-based component versus

What is a higher order component?

What is portal?

What are uncontrolled and uncontrolled components?

React interview questions

https://google.com/
https://blog.scrimba.com/react-interview-questions/what-is-the-difference-between-the-context-api-and-prop-drilling
https://blog.scrimba.com/react-interview-questions/when-shouldn-t-you-use-the-context-api
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 4/24

Using vanilla JavaScript and the DOM API, you can access any element

you like (for example, using document.getElementById) and update it

directly.

When you do this, the browser engine traverses the DOM and re-

renders each node even if that node hasn't changed since the previous

render. This can be noticeably inef�cient 😳

Imagine a scenario where you need to update only one tr of 10,000 in

a table . Rendering all 10,000 rows will almost certainly lead to a drop

in frames, potentially causing the table to �icker and interrupt the

user's experience.

This is where React's virtual DOM (VDOM) comes into play ✅.

React increases your UI's performance by building a "virtual"

representation of the DOM (a VDOM 😉) to keep track of all the

changes it needs to make to the real DOM.

Every time your app's state updates, React builds a new VDOM and

diffs with the old one to determine what changes are necessary before

updating the DOM directly and ef�ciently:

React interview questions

https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 5/24

🔑 The important thing to mention here is dif�ng. If you want to

�ex a little, you can describe this process by its technical

name, which is reconciliation (React reconciles the newly-built

VDOM with the previous one)

📝 Learn more

React's documentation on VDOM

For an alternative viewpoint, we also recommend you

read Virtual DOM is pure overhead

⛔ A common misconception is that the VDOM is a React

feature. This is not true! VDOM is a programming concept that

predates React and is adopted by many UI libraries, including

Vue

Is the virtual DOM the same as the shadow DOM?

React interview questions

https://reactjs.org/docs/faq-internals.html
https://svelte.dev/blog/virtual-dom-is-pure-overhead
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 6/24

In a word, no.

Whereas the virtual DOM is a programming concept implemented by

React predominantly to increase rendering performance, the Shadow

DOM is a browser technology designed for scoping variables and CSS

in web components.

The virtual DOM and Shadow DOM sound similar in name, but that is

where the similarity begins and ends - they are totally unrelated.

🔑 You shouldn't need to know the ins and outs of Shadow DOM

to succeed in React technical interview

📝 Learn more

This screencast provides a short and sweet explanation

of Shadow DOM that will make sense even if you don't

know much about web components

React limitations

What are the limitations of React?

No tool is without its limitations, and React is no exception.

Weighing in at 133kb, React is considered to be a relatively heavy

dependency. By comparison, Vue is 58kb. For this reason, React could

be considered overkill for small apps.

Comparing React and Vue in �le size feels fair because they're both

libraries as opposed to frameworks.

Compared to a framework like Angular, React doesn't enforce strong

opinions about how to write and structure your code or about which

libraries to use for things like data fetching - with Angular, team

React interview questions

https://youtu.be/K5i9zMzVlzM
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 7/24

members will instinctively reach for Angular's built-in HttpClient ,

whereas with React, teams depend on additional data-fetching

libraries like Axios or Fetch.

Because React does not enforce opinions about how to best structure

code, teams need to be especially diligent about writing code

consistently so that the project can evolve deliberately. This can lead

to communication overhead and steepen the learning curve for

newbies.

These are important considerations to make when embarking on a

new project. Once you commit to React, one limitation is that the

documentation is not always linear or up to date 😉.

🔑 Show the interviewer you can think critically about which

tool you apply to which problems rather than blindly reaching

for React

📝 Learn more

As a bonus, you can learn about the limitations of React

Native as many teams �nd the "write once run

everywhere" idea alluring until they try it

JSX

What is JSX?

Similar in appearance to XML and HTML, JavaScript XML (JSX) is used

to create elements using a familiar syntax.

JSX is an extension to JavaScript understood only by preprocessors

like Babel. Once encountered by a preprocessor, this HTML-like text is

converted into regular old function calls to React.createElement :

React interview questions

https://www.simform.com/react-native-limitations-app-development/
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 8/24

🔑 JSX is syntatic sugar for the React.createElement function

📝 Learn more

The React documentation has an introduction to JSX

and a deep dive on JSX - while we cannot promise these

two resources alone will make you an expert, they do

cover almost everything there is to know

⛔ While JSX is HTML-like, it is not HTML. If you're tempted to

answer, "JSX allows you to write HTML in your JavaScript", that

would not be accurate

What is the difference between an element and a
component?

Coming soon.

Can you write React without JSX?

In a word, yes.

JSX is not part of the ECMAScript speci�cation, and therefore no web

browser actually understands JSX.

Rather, JSX is an extension to the JavaScript language only understood

b lik B b l

React interview questions

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/jsx-in-depth.html
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 9/24

by preprocessors like Babel.

When a preprocessor encounters some JSX code, it converts the

HTML-like syntax into regular old function calls to React.createEleme

nt :

React.createElement is part of React's public top-level API just like Re

act.component or React.useRef (to name a couple). Nothing is

stopping you from invoking React.createElement in your own code

should you choose.

🔑 JSX is syntatic sugar for the React.createElement function

meaning you could call React.createElement directly

📝 Learn more

The answers on this StackOver�ow thread reveal all you

need to know about the magic, which is JSX, Babel and

Webpack ✨

Props

How do you pass a value from parent to child?

P th l !

React interview questions

https://reactjs.org/docs/react-api.html
https://stackoverflow.com/questions/41713966/how-babel-and-jsx-related-or-differ
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 10/24

Pass the value as a prop!

🔑 Typically that is all you need to say 👌

📝 Learn more:

React documentation on Components and Props

How do you pass a value from child to parent?

To pass a value from a child component to a parent component, the

parent must supply a function for the child component to call with

the value.

A common example is a custom form component. Imagine a

component to select a language called SelectLanguage .

When the language is selected, we'd like to pass that value back UP to

the parent for processing.

To do this, the SelectLanguage component would need to accept a

callback function called something like onLanguageSelect , which it

will then call with the new value.

🔑 Pass a function prop to the child, which the child can call.

Try and include a common example like a CustomForm or

SelectLanguage form component in your answer

props

📝 Learn more:

We deliberately borrowed the SelectLanguage example

component from this StackOver�ow answer so you can

read more

What is prop drilling?

Prop drilling is where you pass props from some FirstComponent to

React interview questions

https://reactjs.org/docs/components-and-props.html
https://stackoverflow.com/a/38397755/5147646
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 11/24

another SecondComponent , which does not actually need the data and

only passes it to another ThirdComponent and maybe beyond.

Prop drilling is sometimes called threading and is considered to be a

slippery slope if not an anti-pattern 😱.

Imagine drilling a prop 5, 10, maybe more (!) levels deep - that code

would quickly become dif�cult to understand. The trap happens when

you need to share data across many different components - data like

locale preference, theme preference, or user data.

While prop drilling is not inherently bad, there are normally more

eloquent and maintainable solutions to explore like component

composition or React Context however, these solutions are not

without their limitations.

🔑 Prop drilling is what happens when you pass a prop more

than two components deep and the second component doesn't

actually need the data (it just passes it along)

📝 Learn more

Kent C. Dodds provides a balanced view on what prop

drilling is, why it's bad, and how to avoid common

problems with it

Although this post by LogRocket is orientated at

TypeScript developers (where the downsides of prop

drilling are exasperated due to needing additional type

de�nitions), we found it to be an interesting read

Can a child component modify its own props?

Nu-huh.

A component can update its own state but cannot update its own

props.

React interview questions

https://kentcdodds.com/blog/prop-drilling/
https://blog.logrocket.com/mitigating-prop-drilling-with-react-and-typescript/
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 12/24

Think about it like this: Props belong to the parent component, not the

child component - a child component has no business modifying a

value it does not own. Props are, therefore, read-only.

Attempting to modify props will either cause obvious problems or,

worse, put your React app in a subtly unstable state.

React dictates that to update the UI, update state.

🔑 React needs you to treat props as read-only (even if there are

ways of messing with them)

📝 Learn more

This StackOver�ow answer uses example code to

illustrate what can happen if you mess with props from

a child component

While a child cannot update its own props, the value of

those props can change if the parent changes them

through a state change. Despite the sensational

(possibly confusing) title, This FreeCodeCamp post

shows a familiar example of what this pattern looks like

State and lifecycle

What is the difference between props and state?

Props are essentially options you initialize a child component with.

These options (if you like) belong to the parent component and must

not be updated by the child component receiving them.

State, on the other hand, belongs to and is managed by the

component.

State is always initiated with a default value, and that value can

change over the lifetime of the component in response to events like

user input or network responses When state changes the component

React interview questions

https://stackoverflow.com/questions/51435476/why-props-in-react-are-read-only
https://www.freecodecamp.org/news/how-to-update-a-components-prop-in-react-js-oh-yes-it-s-possible-f9d26f1c4c6d/
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 13/24

user input or network responses. When state changes, the component

responds by re-rendering.

State is optional, meaning some components have props but no state.

Such components are known as stateless components.

How does state in a class component differ from
state in a functional component?

State in a class component belongs to the class instance (this),

whereas state in a functional component is preserved by React

between renders and recalled each time.

In a class component, the initial state is set within the component's

constructor function then accessed or set using this.state and thi

s.setState() respectively.

In a functional component, state is managed using the useState

Hook. useState accepts an argument for its initial state before

returning the current state and a function that updates the state as a

pair.

🔑 State in a class component belongs to the class instance

(this) and is initialized along with the class in the constructor

function. In a functional component, the useState Hook is

recalled each time the component renders and returns the

state remembered by React under the hood

📝 Learn more

We really enjoyed this post on Functional Components

vs. Class Components in React by Twilio - the section on

Handling State is particularly pertinent here

What is the component lifecycle?

React interview questions

https://www.twilio.com/blog/react-choose-functional-components
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 14/24

React components have 4 distinct phases of "life":

🌱 First, the component is initialized and mounted on the

DOM

🌲 Over time the component is updated

🍂 Eventually, the component is unmounted or removed from

the DOM

Using lifecycle methods in a class component or the useEffect Hook

in a functional component, we can run code at particular times in a

component's life.

For example, in a class component, we might implement componentDi

dMount and write code to set-up a new web socket connection. As real-

time web socket data trickles in, state is updated, and, in turn, the re

nder lifecycle method is run to update the UI. When the component is

no longer needed, we close the web socket connection by

implementing componentWillUnmount .🔑 React components have several lifecycle methods that you

can override to run code at particular times in the component's

life. Knowing all the functions isn't a bad idea, but it's more

important that you can explain when you'd use each. Some

lifecycle methods are pretty uncommon, so you're unlikely to

have experience with them. Don't lead the interviewer down

this path if you don't need to.

📝 Learn more

This page on React.Component has more details than

you will ever need

How do you update lifecycle in function
components?

Using the useEffect Hook!

React interview questions

https://reactjs.org/docs/react-component.html#the-component-lifecycle
https://reactjs.org/docs/hooks-effect.html
https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
https://reactjs.org/docs/react-component.html
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 15/24

You can think of the useEffect Hook as componentDidMount , componen

tDidUpdate , and componentWillUnmount combined.

🔑 Use useEffect

📝 Learn more

Using the Effect Hook

Effects

What arguments does useEffect take?

useEffect takes two arguments.

The �rst argument is a function called effect and is what gives the

useEffect Hook its name.

The second argument is an optional array called dependencies and

allows you to control when exactly the effect function is run. Think

of a dependencies as variables (typically state variables) that the eff

ect function references and therefore depends on.

If you choose not to specify any dependencies , React will default to

running the effect when the component is �rst mounted and after

every completed render. In most cases, this is unnecessary, and it

would be better to run the effect only if something has changed.

This is where the optional dependencies argument comes in ✅.

When dependencies is present, React compares the current value of d

ependencies with the values used in the previous render. effect is

only run if dependencies has changed ✊

If you want effect to run only once (similar to componentDidMount),

you can pass an empty array ([]) to dependencies .

React interview questions

https://reactjs.org/docs/hooks-effect.html
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 16/24

🔑 The useEffect function takes an effect function and an

optional list of dependencies

📝 Learn more

What is useEffect hook and how do you use it?

When does the useEffect function run?

When useEffect runs exactly depends on the dependencies array

argument:

If you pass an empty array ([]), the effect runs when the

component is mounted (similar to componentDidMount)

If you pass an array of state variables ([var]), the effect runs

when the component is mounted, and anytime the values of

these variables change

If you omit the dependencies argument, the effect is run when

the component is mounted and on each state change

That is about the sum of it!

🔑 That is about the sum of it!

📝 Learn more

Hooks API reference

What is the useEffect function's return value?

The useEffect function takes two arguments - an effect function

and an optional dependencies array.

The effect function returns either nothing (undefined) or a function

we can call cleanup .

React interview questions

https://dev.to/nibble/what-is-useeffect-hook-and-how-do-you-use-it-1p9c#:~:text=useEffect%20is%20a%20function%20which,of%20how%20it%20is%20used.
https://reactjs.org/docs/hooks-reference.html#conditionally-firing-an-effect
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 17/24

This cleanup function executes before the component is removed

from the UI to prevent memory likes (similar to

componentWillUnmount).

Additionally, if a component renders multiple times (as they typically

do), the previous effect is cleaned up before executing the next effect.

🔑 Returns a cleanup function (similar to

componentWillUnmount) and runs after each effect

📝 Learn more

Hooks API reference

Replace lifecycle with hooks in React

Refs

What is the difference between refs and state
variables?

Both refs and state variables provide a way to persist values between

renders; however, only state variables trigger a re-render.

While refs were traditionally (and still are) used to access DOM

elements directly (for example, when integrating with a third-party

DOM library), it has become increasingly common to use refs in

functional components to persist values between renders that should

not trigger a re-render when the value is updated.

There isn't much reason to use refs for this reason in class

components because it's more natural to store these values in �elds

that belong to the class instance and would be persisted between

renders regardless.

🔑 Both persist values between renders, but only state

React interview questions

https://reactjs.org/docs/hooks-reference.html#conditionally-firing-an-effect
https://dev.to/trentyang/replace-lifecycle-with-hooks-in-react-3d4n
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 18/24

variables cause the component to re-render

📝 Learn more

Understanding React's useRef Hook

When is the best time to use refs?

Only use refs when necessary!

Refs are mostly used in one of two ways.

One use of refs is to access a DOM element directly to manipulate it -

an example would be when implementing a third-party DOM library.

Another example might be to trigger imperative animations.

The second use of refs is in functional components, where they are

sometimes a good choice of utility to persist values between renders

without triggering the component to re-render if the value changes.

When someone is new to React, refs often feel familiar to them

because they are used to freely writing imperative code. For this

reason, beginners tend to overreach for refs. We know better. We know

that to get the most from React, we must think in React and ideally

control every piece of our app with state and component hierarchy.

The React documentation describes refs as an "escape hatch" for a

good reason!

🔑 Only use refs when necesasry to avoid breaking

encapsulation

📝 Learn more

Why you should use refs sparingly in production

What is the proper way to update a ref in a function
component?

React interview questions

https://ui.dev/useref/
https://reactjs.org/docs/thinking-in-react.html
https://blog.logrocket.com/why-you-should-use-refs-sparingly-in-production/
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 19/24

component?

Using the useRef hook!

🔑 That is about the sum of it!

📝 Learn more

Hooks API Reference

Context

What is the difference between the context API and
prop drilling?

In React, you explicitly pass data from parent component to child

components through props.

If the child component that needs the data happens to be deeply

nested, we sometimes resort to prop-drilling, which can be a slippery

slope. This is often the case when data is shared across many

different components - data like locale preference, theme preference,

or user data (like the authentication state).

Conversely, the Context API affords us a central data store, which we

can implicitly access to consume data from any component without

 needing to request it as a prop explicitly.

The implicit nature of the Context API allows for terser code that is

easier to manage but can also lead to "gotchas!" if the value is

updated unexpectedly as it won't be so easy to trace the value and

learn where it was modi�ed linearly.

🔑 Prop-drilling is explicit and therefore long-winded, but at

least you know what you're going to get. Context API is implicit

and therefore terse but can cause unnecessary re-renders if

React interview questions

https://reactjs.org/docs/hooks-reference.html
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 20/24

used incorrectly

📝 Learn more

Hooks API Reference

When shouldn't you use the context API?

The Context API's main downside is that every time the context

changes, all components consuming the value re-render. This may

have negative performance consequences.

For this reason, you should only use Context for infrequently updated

data like a theme preference.

🔑 That is about the sum of it!

📝 Learn more

The Context API's dirty little secret

Miscellaneous (but important!) questions

What is Fragment?

Fragment is a newly-introduced component that supports returning

multiple children from a component's render method without needing

an extraneous div element.

You can either reference it using React's top-level API

(`React.Fragment`) or using JSX syntactic sugar (<>).

🔑 Instead of returning a div from a component's render

method, we can instead return a Fragment

📝 Learn more

If you need to answer "why fragments?", this dev.to post is

h

React interview questions

https://reactjs.org/docs/hooks-reference.html
https://leewarrick.com/blog/the-problem-with-context/
https://dev.to/tumee/react-fragments-what-why-how-2kh1
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 21/24

the one

Of�cial documentation also touches on the motivation

and the JSX syntactic sugar

When should you create class-based component
versus a function component?

In the world of React, there are two ways of creating React

components. One is to use a class that derives from React.Component

and the other is to use a functional component with Hooks.

Before Hooks' advent in 2018, it wasn't possible to substitute class-

based components with functional components - mainly because

there was no way to set state and remember values between renders

without writing a class.

With Hooks, classes and functional components are generally

interchangeable, and as we enter the new year, the trend is clear:

functional components are on the rise and for good reasons 📈

Functional components unlock all the advantages of hooks, including

ease of use, testability, and cleaner code.

At the time of this writing, there are no Hook equivalents to the

(uncommon) getSnapshotBeforeUpdate , getDerivedStateFromError ,

and componentDidCatch lifecycle methods, but they are coming "soon."

🔑 Class components and functional components are mostly

interchangeable. Choose whichever the codebase is already

using for consistency. For new projects, use Hooks unless you

need a lifecycle method Hooks don't yet support.

📝 Learn more

Hooks API Reference

React interview questions

https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/hooks-reference.html
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 22/24

What is a higher order component?

A higher-order component (HOC) is a function that takes a component

and returns a new, modi�ed component.

While HOCs are associated with React, they aren't a React feature so

much as a pattern inspired by a functional programming pattern

called higher-order functions whereby you also pass functions to

functions.

You can write custom HOCs or import them from libraries.

One example of an open source HOC is React Sortable HOC, whereby

you pass a list component (based on ul) and receive an enhanced u

l with sorting and drag and drop capabilities.

🔑 The key here would be to recall a time when you have used a

HOC in your own project and to describe why it was the right

pattern for the job

📝 Learn more

This open source repo shows lots of different examples

of what HOCs can look like

What is portal?

React ordinarily has one mounting point - the HTML element you pass

to ReactDOM.render . From here, React adds new elements to the page

in a hierarchy.

Occasionally, you need to break out of this hierarchy.

Imagine a small About component with a button to open a modal.

Because the modal "spills" out of the container, this not only feels

unnatural, it can also be �nicky to pull off because the About

component might already have overflow: hidden set or a deliberate

i d

React interview questions

https://github.com/clauderic/react-sortable-hoc
https://github.com/klarna/higher-order-components
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 23/24

z-index .

This is where portal comes in ✅ .

Portal and the createPortal function provide you with a way to render

children in an additional mounting point (in addition to the main

mounting point passed to ReactDOM.render).

You're not too likely to read or write code using Portal in your own

project.

Portal is mainly used when a parent component has an overflow: hi

dden or z-index , but you need the child to visually "break out" of its

container.

Examples include modals, tooltips, and dialogs; however, we normally

use third-party components for these things anyway, meaning we're

unlikely to need to write Portal code ourselves.

🔑 Portals provide a �rst-class way to render children into a

DOM node that exists outside the DOM hierarchy of the parent

component

📝 Learn more

Portals

What are uncontrolled and controlled components?

A controlled component is an input component like an input, texta

rea or select whose value is controlled by React.

Conversely, an uncontrolled component manages its own state - the

component is not controlled by React and is, therefore, "uncontrolled".

Imagine if you chuck a textarea on the page and start typing.

Anything you type will be stored in the textarea automatically and

React interview questions

https://reactjs.org/docs/portals.html#:~:text=Portals%20provide%20a%20first%2Dclass,element%2C%20string%2C%20or%20fragment.
https://blog.scrimba.com/

19/11/2020 React interview questions

https://blog.scrimba.com/react-interview-questions/ 24/24

ALEX BOOKER
26 OCT 2020 12 MIN READ

Austėja is a new mom, law graduate, and “mom-and-pop” entrepreneur turned full-time

frontend developer 🎉 This is the gutsy story about how Austėja found her passion for

frontend development.

Proven advice to secure your first developer job, with Austėja
Kazlauskytė

•

Scrimba © 2020

accessible through its value property. Although React can access the

value with a ref , React does not control the value here. This would be

an example of an uncontrolled component.

To take control of this component in React, you would need to

subscribe to the textarea s onChange event and update a state

variable (for example, one called input) in response.

Now React is managing the textarea s value, you must also take

responsibility for setting the textarea s value property also. This way,

the content of the textarea can be updated by updating state. It's

easy to imagine a function called clearTextArea that sets the input

state variable to an empty string causing the textarea to clear.

🔑 The names "controlled component" and "uncontrolled

component" are unnecessarily broad. More speci�c names

would be "controlled input component" and "uncontrolled input

component" Narrowing your answer to focus on input

components will ensure you answer the question eloquently..

📝 Learn more

React : Controlled vs. Uncontrolled components

React interview questions

https://blog.scrimba.com/author/scrimba/
https://blog.scrimba.com/getting-your-first-developer-job/
https://blog.scrimba.com/author/scrimba/
https://blog.scrimba.com/
https://blog.scrimba.com/
https://twitter.com/scrimba
https://ghost.org/
https://blog.bitsrc.io/react-controlled-vs-uncontrolled-components-f569f4215ac9
https://blog.scrimba.com/

